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Geniherte Darstellung starker instationdrer Stoflwellen
‘durch Homologie-Losungen

Von C.F.v. WEIZSACKER
Aus dem Max-Planck-Institut fir Physik, Gottingen

Otto Hahn zum 75. Geburtstag gewidmet
(Z. Naturforschg. 9a, 269 —275 [1954]; eingegangen am 12. Februar 1954)

Die gasdynamischen Gleichungen werden im ebenen Fall fiir eine starke instationére
Stolwelle durch einen Homologie-Ansatz auf ein System von gewohnlichen Differential-
gleichungen reduziert. Letztere werden numerisch gelost. Die Losungen haben stets
irgendwo hinter der Front eine Singularitat. Trotzdem konnen sie als gendherte Darstel-
lung wirklicher StoBwellen verwendet werden, da in Arbeiten, deren Ergebnisse hier vor-
laufig referiert werden, gezeigt werden wird, dal Losungen der allgemeinen partiellen
Differentialgleichungen fiir sehr verschiedene Anfangsbedingungen einer bestimmten
Homologie-Losung mit wachsender Zeit immer dhnlicher werden.

1. Einleitung

ie vorliegende Arbeit gibt einen ersten Bericht
Diiber die Rechnungen einer Arbeitsgruppe, die
sich mit der Theorie starker instationdrer StoBwel-
len beschaftigt hat. Hier wird zunéchst eine Familie
von Losungen der gasdynamischen Gleichungen ein-
gefiihrt, die sich aus einem schon mehrmals (so
von Taylor! und von Guderley?) verwendeten
Homologie-Ansatz ergibt. Ferner werden die Er-
gebnisse weitergehender Arbeiten, deren Publika-
tion in Vorbereitung ist, kurz referiert und disku-
tiert. Thr wichtigstes Resultat ist, dall Losungen,
die nicht dem Homologie-Ansatz geniigen, in einer
Reihe von Féllen mit wachsender Zeit einer be-
stimmten Homologie-Losung dhnlich werden.

Der Ausgangspunkt unserer Uberlegungen war
der Wunsch, eine einfache, von wenigen Parametern
abhingige Niherungsdarstellung starker instatio-
nirer Stofwellen zu gewinnen. Eine solche Darstel-
lung kénnte z. B. dort niitzlich sein, wo es sich nicht
darum handelt, die Entwicklung einer einzelnen
StoBwelle zu verfolgen, sondern eine statistische
Gesamtheit von StoBwellen zu beschreiben. Diese
Aufgabe scheint z. B. in der Theorie der Bewegung
des interstellaren Gases vorzuliegen. '

Bisher hat man den Homologie-Ansatz nur ver-
wendet, um strenge Losungen, die bestimmten An-
fangs-, Rand- und Symmetriebedingungen geniigen
sollten, zu ,erraten‘. Daraus ergab sich die Be-

1 G. I. Taylor, The formation of a blast wave by
a very intense explosion, Ministry of Home Security
R.C. 210, (II, 5—153), 1941. Siehe auch*.

schrinkung auf spezielle Glieder der Familie der
Homologie-Losungen (spezielle Werte unseres Ex-
ponenten k). Im allgemeinen pflegen die Homologie-
Funktionen Singularititen zu enthalten und daher
zur strengen Losung der gasdynamischen Gleichun-
gen ungeeignet zu sein. Da wir sie nur als Nahe-
rungslésungen fiir gewisse Raum- und Zeitintervalle
verwenden, sind wir durch die Singularitidten nicht
an ihrer Benutzung gehindert; wie es Guderley?3
in einem analogen Fall zweidimensional stationédrer
Stromung tut, kénnen wir sie in der Néahe der
Singularitat regulér, aber heterolog fortsetzen.

Unsere Rechnungen beschrinken sich auf starke,
ebene StoBwellen. Die erste Einschriankung ist we-
sentlich: nur fiir starke Stofe (groBe Mach-Zahlen)
lassen sich die Ubergangsbedingungen an der Front
mit dem Homologie-Ansatz vereinbaren. Anderer-
seits besteht auch gerade in diesem Grenzfall das
Bediirfnis nach einer neuen Berechnungsweise, da
hier nicht angenommen werden darf, die Entropie
hinter der Front sei von Teilchen zu Teilchen die-
selbe, wie es die meisten analytischen Methoden der
Gasdynamik tun miissen. Die zweite Einschriankung
ist unwesentlich. Friither ist das Verfahren sogar nur
auf kugel-, kegel- und zylindersymmetrische Falle
angewandt worden, vermutlich da im ebenen Fall
keine im ganzen Raum singularitatenfreie Losung
existiert. Wir haben umgekehrt mit dem ebenen Fall
begonnen und die Rechnung noch nicht auf andere
Symmetrien ausgedehnt.

2 Guderley, Luftfahrt-Forsch. 19, 302 [1942].
3 Guderley, Z. angew. Math. Mech. 22, 121 [1942].
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2. Uberschlagsrechnung fiir eine
,»,Blockwelle*

Die Suche nach Homologie-Lisungen wurde nahe-
gelegt durch einen physikalischen Gedankengang,
der die fortschreitende instationire StoBBwelle grob
schematisiert. Wir stellen uns die durch den Raum
wandernde StoBwelle als einen ,,Block mit ein-
heitlicher Stromungsgeschwindigkeit « und einheit-
licher Dichte p vor. Dieser Block lduft in ein ruhen-
des Medium konstanter Dichte hinein. Die Front
sei eben und unbegrenzt. Senkrecht zur Front habe
der Block die Dicke d. u, p und d sind Funktionen
der Zeit, die wir nun bestimmen wollen.

Pro Flicheneinheit befindet sich im Block die
Masse

m=pd mit dem Impuls J=mu.

Wir nehmen zunichst an, die Welle verliere an
ihrem hinteren Ende keine Masse; sie wiirde dann
streng genommen ein Vakuum hinter sich lassen.
An der Front hingegen sammelt sie stindig Masse
auf. Also wéichst m mit der Zeit an. Hingegen muf
J, der Gesamtimpuls pro Fldcheneinheit, in dieser
Niherung konstant sein. Also nimmt die Stro-
mungsgeschwindigkeit v mit der Zeit ab.

Von den Ubergangsbedingungen an der Front
brauchen wir in dieser Abschéitzung nur zwei ein-
fache Aussagen: 1. Die Dichte hinter der Front (im
,,Block®) ist fiir starke Stoe ein festes Vielfaches
der Dichte vor der Front, unabhingig von u [vgl.
Gl. (3b)]. 2. Die Geschwindigkeit », mit der die
Front selbst fortschreitet, ist ein festes Vielfaches

von % [vgl. Gl. (3a)]. Das bedeutet:
o=const; v=oau, a>1.

Die pro Zeit- und Flacheneinheit aufgesammelte
Materie ist demnach

m=p0(v—u)=pfu, f=(a—1)p.
Da der Impuls konstant sein soll, ist
j=7hu+md=ﬁu?+ Juju=0.
Die resultierende Differentialgleichung
% = — const u3
hat die Losung  u = const ¢~
Mit u ~ t=% wird dann m ~ d ~ t*.

Durch unseren groben Ansatz haben wir erzwun-
gen, daf} die Verteilung von « und p iiber den Raum
sich selbst mit wachsender Zeit d&hnlich bleibt; die
Zeitabhingigkeit ergab sich als Potenz mit dem
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,,Homologie-Exponenten‘ k=15. Die Homologie-
Losungen ergeben sich, wenn man mit demselben
Ansatz fiir die Zeitabhéngigkeit die gasdynamischen
Gleichungen streng zu losen sucht. Dabei zeigt sich,
daB fiir jeden Wert von k£ Losungen existieren.

Die Stabilitdtsrechnungen (Abschnitt 6) zeigen
eine Tendenz vieler Anfangsverteilungen, mit der
Zeit in eine Homologie-Losung tiberzugehen, in der
u etwas langsamer als in der obigen Abschitzung,
niamlich etwa mit ¢~%¢ abfillt. Qualitativ 148t sich
das* wie folgt deuten. Die Welle wird, wenn man
sie als Block schematisiert, in Wirklichkeit am hin-
teren Ende Materie verlieren. Diese muf} also eine
geringere Geschwindigkeit als » annehmen. Damit
wird ihr Impuls kleiner, als er war, solange sie noch
dem Block angehérte. Die zuriickgelassene Materie
iibertriagt also wie bei einer Rakete Impuls auf den
Block. Dessen Impuls pro Masseneinheit nimmt
somit zu, und daher fallt seine Geschwindigkeit
langsamer als nach obiger Abschétzung mit der Zeit
ab. Man kann auch diesen Gedankengang durch
Einfithrung einer mittleren Geschwindigkeit und
Dichte hinter dem Block quantitativ fassen und
erhalt dann einen von ! abweichenden Exponen-
ten, der aber nur durch zusitzliche Uberlegungen
iiber die Energie der Stromung festgelegt werden
koénnte ; wir verzichten auf diese Rechnung, um uns
den strengen Losungen zuzuwenden.

3. Die Grundgleichungen

Wir verwenden die Grundgleichungen der Gas-
dynamik fiir ein ebenes Problem in der Form

Kontinuitatsgleichung: o, + up,+o0u, =0, (la)
Impulsgleichung : QU+ puu,+ p,=0, (1b)
Entropiegleichung: S+ us, =0; (le)

0, P, u, s sind resp. Dichte, Druck, Stromungsge-
schwindigkeit, Entropie der Masseneinheit. Die En-
tropie kann vermittels

§=c, Inpp™ (2)

eliminiert werden. x» ist das Verhéltnis der spezifi-
schen Wiarmen, das wir in den numerischen Rech-
nungen, im Hinblick auf die geplante astrophysika-
lische Anwendung auf einatomige Gase, zu 5/3 an-
genommen haben.

Diese Gleichungen sind zu ergdnzen durch die
Ubergangsbedingungen an der Front, die wir von

* Ich verdanke diese Bemerkung Herrn v. Hoer-
ner.
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vornherein fiir den Grenzfall sehr gro3er Machscher
Zahl schreiben, fiir den wir sie allein zu verwenden
haben. Wir schreiben sie fiir allgemeines % und fiir
%=>5/3

2 3

u'—-m’vzzv, (3&)
x4+ 1

e=_—7 0r=4er; (3b)
x—1 , 1 5

P=—5—pu =7 ou (3¢)

Dabei ist v die Geschwindigkeit, mit der die Front
wandert, und gy die Dichte des ruhenden Gases vor
der Front.

Es sei erlaubt, eine kurze direkte Ableitung dieser
Ubergangsbedingungen zu geben, die gewohnlich
aus den komplizierteren Bedingungen fiir Stof3e be-
liebiger Stérke durch Grenziibergang gewonnen
werden. Wir betrachten den Vorgang in dem Be-
zugssystem, in dem das durch die Front hindurch-
gegangene Gas gerade zur Ruhe gekommen ist
(dieses Bezugssystem ist bei Courant und Fried-
richs? illustriert). Das Gas der Dichte pg stromt
in diesem System mit der ,,absoluten‘ Geschwin-
digkeit » auf die Front zu, die ihm mit der Relativ-
geschwindigkeit v entgegeneilt. Der fiir das verdich-
tete Gas verfiighare Raum wichst mit der ,,abso-
luten* Geschwindigkeit der Front, d. h. mit v—u.
Die Erhaltung der Masse erfordert daher

e(v—u)=pgrv. (4)
Das anstromende Gas hat die Impulsdichte ggu.
Pro Zeit- und Flacheneinheit wird daher der Im-
puls o uv von der Front verschluckt. Er mufl durch
die Druckdifferenz aufgefangen werden. Der Grenz-
fall des starken Stofles verlangt, dafl der Druck im
anstromenden Gas vernachlissigt werden kann.
Also ist
P = QRUV. (5)

Die kinetische Energie des anstromenden Gases pro
Masseneinheit ist u2/2. Sie wird beim Durchgang
durch die Front v6llig in Wéarme verwandelt, da das
Gas ja nachher makroskopisch ruht. Die Warme-
energie des anstromenden Gases wird wieder ver-
nachlissigt. Also hat das Gas nach dem Durchgang
durch die Front die thermische Energie pro Massen-
einheit #2/2 und pro Volumeneinheit pu?/2. Nun ist
in einem Gas mit f atomaren (translatorischen oder

4 R. Courant and Friedrichs, Supersonic Flow
and Shock waves, Interscience Publishers, New York
1948; Beilage zu S. 124.
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rotatorischen) Freiheitsgraden die thermische Ener-
giedichte e=fp/2=p/(x—1). Folglich ist

p= xz - ou. (6)
Dies ist bereits die Bedingung (3 ¢): die beiden ande-
ren folgen miihelos aus (4) und (5).

Anschaulich ist wohl das Wichtigste an diesen Be-
dingungen, daf3 die Dichte auch bei beliebig starken
StoBen nur um den von der StoBstirke unabhéngi-
gen Faktor (x+1)/(¢—1) zunehmen kann. Dies 143t
sich aus der eben gegebenen Herleitung physika-
lisch einleuchtend machen. Die Molekiile des Gases
behalten beim Durchgang durch die Front ihre
kinetische Energie bei; diese wird nur aus der ge-
ordneten Form des Stromens in die ungeordnete der
Wirme iberfithrt. Dabei nimmt der Betrag der
durchschnittlichen  Geschwindigkeitskomponente
des Molekiils in der urspriinglichen Flugrichtung
nur um einen festen Faktor ab, der daher riihrt,
daB die Energie nun iiber alle Freiheitsgrade gleich-
méiBig verteilt wird. Ein Teil der ,,zur Ruhe gebrach-
ten‘“ Molekiile fliegt den ihnen nachfolgenden mit
dieser ihrer thermischen Geschwindigkeit entgegen
und bringt sie schon an einem weiter stromaufwiérts
gelegenen Ort zum Stehen. Je schneller die anstro-
menden Molekiile sind, desto schneller fliegen ihnen
auch die thermischen Molekiile entgegen, und der
Ort, an dem sie sich treffen, teilt den mittleren Ab-
stand zweier aufeinanderfolgender Molekiile immer
im selben Verhéltnis.

4. Der Homologie-Ansatz

Die Gln. (1) enthalten keine dimensionsbehafte-
ten Natur- oder Materialkonstanten. Ihre Form ist
daher invariant gegeniiber der Skalentransforma-
tion von Léange, Zeit und Dichte

r=oaz, t =t 0 =vo, (7)

wenn Geschwindigkeit und Druck entsprechend
mittransformiert werden

u=a-p%, p=a2f2yp. (8)
Hingegen zeichnen die Losungen derselben Glei-
chungen im allgemeinen absolute Mafe aus und sind
daher dann gegeniiber der Skalentransformation
nicht invariant. Z. B. fithrt man zur Linearisierung
der Gleichungen ,,ungestorte” Werte von Dichte
und Druck ein und definiert damit zugleich eine ab-
solute Geschwindigkeit, die Schallgeschwindigkeit ;
periodische Losungen zeichnen dariiber hinaus noch
eine Léange, die Wellenldnge, aus. Doch besitzt eine
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gegen eine bestimmte Transformationsgruppe in-
variante Differentialgleichung auch Lisungen, die
gegeniiber derselben Gruppe invariant sind (,,sym-
metrische Lésungen®). Diese Lisungen interessieren
uns hier. Wir nennen sie Homologie-Lisungen.
Wir betrachten nicht die allgemeinste mogliche
Homologie-Lésung (vgl. dazu Birkhoff?), sondern
beschrinken uns auf Lésungen, die von einer neuen
Variablen
5 = k-1

9)
und der Zeit nach dem Ansatz
e=1%r (&),

abhéngen. Derselbe Ansatz wurde von Guderley
und von Courant und Friedrichs fiir zentral-
symmetrische Probleme verwendet. Zum Vergleich
stellen wir einige Bezeichnungen dieser beiden Ar-
beiten den unseren gegeniiber:

u=t*gp &), p=tty )  (10)

Guderley3: §& n 0 né&y
Courant-

Friedrichst: =% a=1"1 » Q an~ttu
hier: 3 1—k d r(=p) ¢ (11)

Unsere Losungen sind nur brauchbar, wenn auch
die Randbedingungen die Skalentransformation zu-
lassen. Fiir die Ubergangsbedingungen (3) trifft dies
zu. Hier liegt der Grund dafiir, dall wir uns auf
starke StoBe beschrankt haben; die allgemeinen
Stollbedingungen fithren durch die Zustandsgréfen
vor dem Stoll absolute Malle ein. Die Bedingung
(3b) verlangt d=0. Hingegen bleibt £ beliebig. Die
GIn. (10) reduzieren sich damit auf die von nun an
benutzte Form

e=p (&), u=t*gl), p=t2y ().

Wir wihlen ferner von nun an x=15/3.

Nun heile der Ort der Front X = X (¢), und die
Werte der Zustandsgrofien am Ort der Front P, @
und ¥. Nach (3a) ist

dX 4 4

su(X) =5 t*0.

(12)

(13)

Wir versuchen den Ansatz, dafl die Front fiir alle
Zeiten an demselben festen Wert &y liege. Damit
wird X =¢&p 1% und Gl. (13) wird mit

5 Garrett Birkhoff, Hydrodynamics, a study in
logic fact and similitude, Princeton University Press,
London 1950.

* Ich danke Herrn Biermann fir die Moglichkeit,
die Rechenmaschine fiir diese und die daran anschlie-
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4
F= 31—k

D (14)

Uy

erfiillt.

Wir konnen danach o und ¢ durch ihre Front-
werte dimensionslos machen; d.h. wir erfiillen alle
Randbedingungen (3) durch die Wahl

1 4 5

PZIaQZI)ngy‘EF:m' (]'"))
Fiihren wir noch die Hilfsgrof3e

1=¢+(k—1)¢ (16)

ein und setzen in die Grundgln. (1) ein, so erhalten
wir die drei gewohnlichen Differentialgleichungen
(Strich heillit Ableitung nach &)
e +e¢ =0,
109 —kop—vy' =0,
’ 5 ’ D
2y —gye)—2koy=0.
Guderley und Courant-Friedrichs erhalten
statt dieser drei Gleichungen eine einzige, dafiir
kompliziertere gewohnliche Differentialgleichung
und zwei Quadraturen. Nach dieser Methode werden
die hier vorgelegten Lésungen in einer Arbeit von
Héafele diskutiert werden.
Das obige Verfahren ist fiir alle Werte von k auller

k=1 anwendbar. In diesem Sonderfall mu3 man
statt (9) und (12) den Ansatz

(17)

E—z—snt, p=0(8),
w=t1p&), p=t2y(&)

wihlen. Man erhéilt dann wieder die Gln. (17), wenn
man in ihnen

(18)

4
1=9—3% (19)

wahlt und fiir £ den Wert 1 einsetzt.

5. Losungen fiir verschiedene k

Die GIn. (17) wurden auf der elektronischen
Rechenmaschine G 1* fiir eine Reihe von k-Werten
numerisch integriert. Das Ergebnis dieser Rech-
nungen wird im folgenden beschrieben ; eine mathe-
matische Analyse wird die Arbeit von Hifele
geben.

Die verwendeten Werte lagen im Intervall
—1 =k = + 2. Aullerhalb dieses Intervalls sind
keine wesentlichen Abweichungen des Losungstyps

Benden Rechnungen meiner Mitarbeiter benutzen zu
konnen, Herrn Schliiter fur die erste Anleitung zum
eigenen Rechnen, und den Herren Hain und F.
Meyer fur die Mitwirkung bei den Rechnungen.



STARKE INSTATIONARE STOSSWELLEN

von dem an den Grenzen des Intervalls geltenden
zu erwarten. Im Intervall liegen zwei kritische
Werte, an denen sich das Verhalten der Loésungen
vollig andert. Der eine Wert ist £=0. Er entspricht
der stationdren StoBfront, hinter der alle Zustands-
groflen konstant sind; diese ist also ein Sonderfall
der Homologie-Losungen. Der andere kritische Wert
hat sich in miihevollen numerischen Rechnungen
von Héafele und Hain zu £=0,333 ergeben; ob

10

e gfl-g ' ) I

qnz

Abb. 1. Losung im Gebiet I. £=0,9. Der Ort der Front
ist beim Abszissenwert 0. Die Skala auf der Abszissen-
achse ist in diesen und den folgenden Figuren verschie-
den gewahlt, so dall geometrisch moglichst vergleich-
bare Bilder entstehen. Der letzte in der Rechnung ver-
wendete Abszissenwert ist jeweils angegeben.

70

033

128 — I-r 0
Abb. 2. Losung im Gebiet II. k=0,3.

der strenge Wert k=1/3 wiire, konnte bisher nicht
ermittelt werden**. Wir unterscheiden drei Gebiete :
1:k>0,333:11:0,333> k> 0; II1: £ <0. Die ersten
Figuren zeigen je ein Beispiel fiir die drei Losungs-
typen. Als Abszisse ist der Abstand von der Front
&= EF —¢&

gewihlt. Aufgetragen sind jeweils o, u, p und die
Temperatur 7.

** Anm. b. d. Korr.: Dies wurde inzwischen von
v. Hagenow bewiesen.
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Als Beispiel fiir eine Losung in I wurde £=0,9
gewihlt. p, v und p nehmen von der Front an nach
hinten stetig ab: die Temperatur ist nahezu kon-
stant mit einem flachen Maximum. In der Néhe der
Stelle e=0,1 werden alle Funktionen plétzlich sehr
steil und bekommen bei demselben Abszissenwert
schlieBlich eine senkrechte Tangente. Uber diesen
Punkt hinaus kann die Loésung nicht fortgesetzt
werden. Bei weiterer Rechnung wiirden die Kurven
u (&), 0 (&) usw. umkehren, also fiir £&-Werte zwischen
der singulidren Stelle und der Front zweideutig
werden, fiir &-Werte, die weiter von der Front ent-
fernt sind, tiberhaupt keine Losung ergeben.

200

100

L 1 g
0086 — 2 0

Abb. 3. Losung im Gebiet I1I. k=—1.

Als Beispiel fiir eine Losung in 11 ist die fiir £=0,3
angegeben. %, p und p nehmen wieder stetig ab, aber
so, dal} die Temperatur bei wachsender Entfernung
von der Front stindig zunimmt und schlief3lich bei
einem endlichen &-Wert divergiert. Auch hier kann
die Losung nicht iiber den singuldren Punkt hinaus
gefithrt werden.

Als Beispiel fiir eine Losung in IIT stehe k=—1.
Hier nehmen u, o und p nach hinten, soweit die
Rechnung geht, immer weiter zu. SchlieBlich muf3
aber eine Singularitdt dhnlich der in I eintreten.
Dies wird in den Arbeiten von Héfele und F.
Meyer im einzelnen dargelegt werden.

Ehe wir auf die Singularititen der Losungen ein-
gehen, sei ihr Verhalten im reguliren Gebiet eror-
tert. Man kann fiir jede Zeit ¢ die Funktionen von &
als Funktionen von x lesen. Diese verdndern sich
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dann mit der Zeit dhnlich zu sich selbst. Man kann
also die Homologie-Losungen als solche Losungen
charakterisieren, deren Anfangsbedingung gerade
eine Weiterentwicklung der Losung garantiert, bei
der sie zu sich selbst dhnlich bleibt. Daher haben
wir bei ihnen nicht mehr die Freiheit, eine Anfangs-
verteilung der Zustandsgréfen vorzugeben.

Die GI. (9) zeigt, daB sich die &£-Skala fiir t=0 auf
einen Punkt zusammenzieht (oder, fiir £> 1, un-
endlich gedehnt wird). Wir beschrinken die Diskus-
sion auf positive Werte von ¢; fiir negative ¢ werden
die Losungen von F. Meyer und Héfele diskutiert
werden. Die Homologie-Losungen zeigen also auch
fiir einen bestimmten Zeitpunkt ein singuldres Ver-
halten. Physikalisch sinnvoll sind sie von einem
Zeitpunkt ¢ an, der etwas grofler als 0 ist. Wir stellen

ket}
i k=0
7
k=~

k=2 H

7 -
1 1 1 1 1 1
00 7 X—

Abb. 4. Frontverlaufe im x-{-Diagramm fiir verschie-
dene Werte von k.

ihr Verhalten dar, indem wir im z-t-Diagramm die
Weltlinie der Front aufzeichnen, nach der aus (14)
folgenden Gleichung

4

e -k
2=ga—gm '

(20)

Fir £=0 ist sie eine gerade Linie; die stationére
Front lauft mit konstanter Geschwindigkeit. Fiir
k<0 nimmt die Geschwindigkeit mit wachsender
Zeit zu (u ~ t7%); hier wird die Front durch den
hinter ihr herrschenden Uberdruck stindig be-
schleunigt (mit einem wegen der Singularitit un-
endlichen Energievorrat). Fir 0<k<1 wird die
Front, die von einem im endlichen gelegenen Ort
mit anfangs unendlicher Geschwindigkeit abgeht,
stetig verlangsamt, liuft aber mit der Zeit beliebig
weit. Fiir £> 1 kommt die Front fiir =0 aus dem
Unendlichen, wird aber im Endlichen asymptotisch
zum Stehen gebracht.
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6. Homologie-Loésungen als Ndherungs-
l6sungen

Alle Homologie-Losungen, auller der fiir k=0,
haben Singularititen. Auch die Grenzlosung fiir
k=0,33, welche zwar die fiir die Gebiete I und II
charakteristischen Singularititen vermeidet, wird,
wie Héfele gezeigt hat, in gréferer Entfernung
von der Front doch singulédr. Wir konnen daher in
unserem ebenen Problem nicht, wie es Guderley
im zentralsymmetrischen Problem getan hat, einen
Wert von k& durch die Forderung durchgingiger
Regularitit der Losung auszeichnen. Es fragt sich,
ob die Homologie-Losungen unter diesen Umstéin-
den tiberhaupt physikalische Bedeutung haben.

Nachdem wir aus solchen Zweifeln heraus die
Homologie-Losungen beiseite gelegt hatten, wurde
unser Interesse an ihnen neu erweckt durch eine
graphische Losung der partiellen Differentialgln.
(1) fir eine willkiirlich gegebene Anfangsbedingung,
die von E. A. Miiller ausgefiihrt wurde. Es zeigte
sich, daf diese Losung fiir groBe Zeiten in der Nihe
der Front einer Homologie-Losung mit einem k-Wert
in der Niahe von 0,4 dhnlich wurde. Wir haben
daraufhin das Problem in einer Reihe von Arbeiten
wieder aufgenommen. Im folgenden soll iiber die
Fragestellung und iiber die wichtigsten bisherigen
Resultate dieser Arbeiten, die in extenso in dieser
Zeitschrift publiziert werden sollen, kurz referiert
werden.

Hg X —>

Abb. 5. Abhingigkeitsgebiet einer von B bis A homo-
logen Losung.

Man kann die Frage stellen, was aus einer Vertei-
lung von g, u, p wird, die in einem bestimmten
Augenblick dem reguldren Teil einer Homologie-
Lésung von der Front bis in die Nahe der singuliren
Stelle gleicht, dort aber dann in einer ,,geglatteten
Weise fortgesetzt wird. Sei (Abb. 5) OBC der Front-
verlauf und OA die Weltlinie der Singularitit der
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gewihlten Homologie-Losung (OB und OA sind je-
weils Kurven &= const), und werde zur Zeit ¢, eine
Anfangsverteilung vorgegeben, die von B bis nahezu
A der Homologie-Lésung gleich ist, dahinter aber
von ihr abweicht, so konnen wir den weiteren Verlauf
der Losung nach der Charakteristiken-Theorie dis-
kutieren. Die drei Gln. (1) zeichnen 3 Scharen von
charakteristischen Kurven aus. Wenn a die Schall-
geschwindigkeit ist, so liuft von jedem Punkt im
z-t-Diagramm eine Charakteristik mit der Geschwin-
digkeit u+ a nach rechts, eine andere mit der Ge-
schwindigkeit w—a nach links; zwischen ihnen
liegen die Lebenslinien der Geschwindigkeit «, auf
denen die Entropie konstant ist. Der Einfluf der
Abweichung der wirklichen Anfangsverteilung von
der homologen bei A erreicht die Front erst lings
der rechtslaufigen Charakteristik durch A; diese
schneide die Front in C. Im Dreieck ABC muf} die
wirkliche Losung also mit der Homologie-Losung
iibereinstimmen. D. h. wenn man eine Homologie-
Losung lings einer Strecke CA vorgibt, so gibt es
ein Abhangigkeitsgebiet dieser Strecke, in dem sich
die Homologie-Losung wegen der Differentialglei-
chungen selbst aufrechterhalt.

v. Hoerner und Hain haben nun durch aus-
fithrliche numerische Losungen der Gln. (1) fir
verschiedene Anfangsverteilungen gefunden, daB
nicht nur diese, auf ein Gebiet beschrinkte Tendenz
der Homologie-Losung zur Selbsterhaltung besteht,
sondern dafl umgekehrt anfangs sehr verschiedene,
zunichst durchaus nicht homologe Lésungen mit
wachsender Zeit gegen eine und dieselbe Homologie-
Losung konvergieren. Diese hat nach der Rechnung
ein k zwischen 0,38 und 0,40. Abb. 6 zeigt die Lo-
sung fiir £=0,39, die im Zusammenhang der unter
5. diskutierten Losungen schon vorher durch einige
Eigenschaften aufgefallen war. Sie hat den allge-
meinen Typus der Losungen des Gebiets I. Sie reicht
aber hinter der Front sehr weit und erreicht dort

negative Werte der Geschwindigkeit sowie sehr

kleine Werte von Druck und Dichte. Wéhrend dies
fiir alle Losungen gilt, die zwischen 0,33 und etwa
0,4 liegen, ist sie auBlerdem durch den weithin
nahezu geradlinigen Verlauf von Geschwindigkeit
und Temperatur (Stromungs- und Schallgeschwin-
digkeit) ausgezeichnet. #’’ verschwindet an der
Front fiir k=5/13=0,385, und 7" fiir £=0,379.
Es ist uns bisher nicht vollstindig gelungen, die
,,empirische‘ Stabilitdt dieser Losung theoretisch
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zu begriinden. Immerhin hat ¥. Meyer folgendes
gezeigt: Er entwickelte beliebig vorgegebene An-
fangsverteilungen in der Nachbarschaft der Front
nach Potenzen des Abstands von der Front. Die er-
sten Entwicklungsglieder konnen mit den ersten Glie-
dern einer geeignet gewihlten Homologie-Losung
gleichgesetzt werden. So 1at sich ein ,,effektives &*
der Anfangsverteilung an der Front bestimmen. Die
Entwicklung wird so weit getrieben, dafl die Ab-
weichung der Anfangsverteilung von der Homo-
logieverteilung in Erscheinung tritt. Diese Abwei-
chung kann durch gewisse aus den Entwicklungs-
koeffizienten gebildete Ausdriicke gemessen werden.
Nun wird die zeitliche Weiterentwicklung der An-
fangsverteilung fiir kleine Zeitspannen untersucht.
Dabei édndert sich natiirlich das effektive k. Es
zeigte sich, daf es stabile und labile Regionen der
k-Werte und der ,,Abweichungskoeffizienten‘‘ gibt,
und dafB} in der Gegend von k=0,39 ein (vielleicht
der einzige) Bereich der Stabilitit liegt, dergestalt,
daf3 Losungen, die sich nicht zu weit von £=0,39
unterscheiden, mit der Zeit dorthin tendieren.

10
v
7
g
0333
)4
+ + g
5% - E-E g
k=039
t =const

Abb. 6. Losung fir £=0,39.

Die Grenze dieser Methode liegt darin, dal die
Entwicklungen schlecht konvergieren. Fiir grof3ere
Gebiete existieren bis jetzt nur qualitative Uber-
legungen von der in Abschnitt 2 mitgeteilten Art.
Ebenso liegen im Augenblick der Abfassung dieser
Arbeit noch keine Ergebnisse iiber die Umformung
vor, welche auch die Losung mit £=0,39 von der
Stelle ihrer Singularitit her mit der Zeit erleiden
muf}; wegen der Linge dieser Losung sind auch die
dafiir n6tigen numerischen Rechnungen sehr zeit-
raubend.



