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Die gasdynamischen Gleichungen werden im ebenen Fall für eine starke instationäre 
Stoßwelle durch einen Homologie-Ansatz auf ein System von gewöhnlichen Differential-
gleichungen reduziert. Letztere werden numerisch gelöst. Die Lösungen haben stets 
irgendwo hinter der Front eine Singularität. Trotzdem können sie als genäherte Darstel-
lung wirklicher Stoßwellen verwendet werden, da in Arbeiten, deren Ergebnisse hier vor-
läufig referiert werden, gezeigt werden wird, daß Lösungen der allgemeinen partiellen 
Differentialgleichungen für sehr verschiedene Anfangsbedingungen einer bestimmten 
Homologie-Lösung mit wachsender Zeit immer ähnlicher werden. 

1. E i n l e i t u n g 

Die vorliegende Arbeit gibt einen ersten Bericht 
über die Rechnungen einer Arbeitsgruppe, die 

sich mit der Theorie starker instationärer Stoßwel-
len beschäftigt hat. Hier wird zunächst eine Familie 
von Lösungen der gasdynamischen Gleichungen ein-
geführt, die sich aus einem schon mehrmals (so 
von T a y l o r 1 und von G u d e r l e y 2 ) verwendeten 
Homologie-Ansatz ergibt. Ferner werden die Er-
gebnisse weitergehender Arbeiten, deren Publika-
tion in Vorbereitung ist, kurz referiert und disku-
tiert. Ihr wichtigstes Resultat ist, daß Lösungen, 
die nicht dem Homologie-Ansatz genügen, in einer 
Reihe von Fällen mit wachsender Zeit einer be-
stimmten Homologie-Lösung ähnlich werden. 

Der Ausgangspunkt unserer Überlegungen war 
der Wunsch, eine einfache, von wenigen Parametern 
abhängige Näherungsdarstellung starker instatio-
närer Stoßwellen zu gewinnen. Eine solche Darstel-
lung könnte z . B . dort nützlich sein, wo es sich nicht 
darum handelt, die Entwicklung einer einzelnen 
Stoß welle zu verfolgen, sondern eine statistische 
Gesamtheit von Stoß wellen zu beschreiben. Diese 
Aufgabe scheint z. B. in der Theorie der Bewegung 
des interstellaren Gases vorzuliegen. 

Bisher hat man den Homologie-Ansatz nur ver-
wendet, um strenge Lösungen, die bestimmten An-
fangs-, Rand- und Symmetriebedingungen genügen 
sollten, zu „erraten". Daraus ergab sich die Be-

1 G. I. T a y l o r , The formation of a blast wave by 
a very intense explosion, Ministry of Home Security 
R.C. 210, (II, 5—153), 1911. Siehe auch4. 

schränkung auf spezielle Glieder der Familie der 
Homologie-Lösungen (spezielle Werte unseres E x -
ponenten k). Im allgemeinen pflegen die Homologie-
Funktionen Singularitäten zu enthalten und daher 
zur strengen Lösung der gasdynamischen Gleichun-
gen ungeeignet zu sein. Da wir sie nur als Nähe-
rungslösungen für gewisse Raum- und Zeitintervalle 
verwenden, sind wir durch die Singularitäten nicht 
an ihrer Benutzung gehindert; wie es G u d e r l e y 3 

in einem analogen Fall zweidimensional stationärer 
Strömung tut, können wir sie in der Nähe der 
Singularität regulär, aber heterolog fortsetzen. 

Unsere Rechnungen beschränken sich auf starke, 
ebene Stoß wellen. Die erste Einschränkung ist we-
sentlich : nur für starke Stöße (große Mach-Zahlen) 
lassen sich die Übergangsbedingungen an der Front 
mit dem Homologie-Ansatz vereinbaren. Anderer-
seits besteht auch gerade in diesem Grenzfall das 
Bedürfnis nach einer neuen Berechnungsweise, da 
hier nicht angenommen werden darf, die Entropie 
hinter der Front sei von Teilchen zu Teilchen die-
selbe, wie es die meisten analytischen Methoden der 
Gasdynamik tun müssen. Die zweite Einschränkung 
ist unwesentlich. Früher ist das Verfahren sogar nur 
auf kugel-, kegel- und zylindersymmetrische Fälle 
angewandt worden, vermutlich da im ebenen Fall 
keine im ganzen R a u m singularitätenfreie Lösung 
existiert. Wir haben umgekehrt mit dem ebenen Fall 
begonnen und die Rechnung noch nicht auf andere 
Symmetrien ausgedehnt. 

2 G u d e r l e y , Luftfahrt-Forsch. 19, 302 [1942]. 
3 G u d e r l e y , Z. angew. Math. Mech. 22, 121 [1942]. 
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2. Ü b e r s c h l a g s r e c h n u n g f ü r e i n e 
,, B l o c k w e l l e " 

Die Suchenach Homologie-Lösungen wurde nahe-
gelegt durch einen physikalischen Gedankengang, 
der die fortschreitende instationäre Stoßwelle grob 
schematisiert. W ir stellen uns die durch den R a u m 
wandernde Stoßwelle als einen „ B l o c k " mit ein-
heitlicher Strömungsgeschwindigkeit u und einheit-
licher Dichte Q vor. Dieser Block läuft in ein ruhen-
des Medium konstanter Dichte hinein. Die Front 
sei eben und unbegrenzt. Senkrecht zur Front habe 
der Block die Dicke d. u, Q und d sind Funktionen 
der Zeit, die wir nun bestimmen wollen. 

Pro Flächeneinheit befindet sich im Block die 
Masse 

m = gd mit dem Impuls J — mn. 

Wir nehmen zunächst an, die Welle verliere an 
ihrem hinteren Ende keine Masse; sie würde dann 
streng genommen ein Vakuum hinter sich lassen. 
An der Front hingegen sammelt sie ständig Masse 
auf. Also wächst m mit der Zeit an. Hingegen muß 
J, der Gesamtimpuls pro Flächeneinheit, in dieser 
Näherung konstant sein. Also nimmt die Strö-
mungsgeschwindigkeit u mit der Zeit ab. 

Von den Übergangsbedingungen an der Front 
brauchen wir in dieser Abschätzung nur zwei ein-
fache Aussagen: 1. Die Dichte hinter der Front (im 
„ B l o c k " ) ist für starke Stöße ein festes Vielfaches 
der Dichte vor der Front, unabhängig von u [vgl. 
Gl. (3b)]. 2. Die Geschwindigkeit v, mit der die 
Front selbst fortschreitet, ist ein festes Vielfaches 
von u [vgl. Gl. (3a)]. Das bedeutet: 

Q — const; v = au, a > 1. 

Die pro Zeit- und Flächeneinheit aufgesammelte 
Materie ist demnach 

m = q (v — u) = ßu, ß = (et — 1)£>. 

Da der Impuls konstant sein soll, ist 

J — mu + mü = ßu2 + Ju/u = 0 . 

Die resultierende Differentialgleichung 

ü = — const w3 

hat die Lösung u — const . 

Mit u ~ t~Vl wird dann m ~ d ~ tv\ 

Durch unseren groben Ansatz haben wir erzwun-
gen, daß die Verteilung von u und Q über den Raum 
sich selbst mit wachsender Zeit ähnlich bleibt ; die 
Zeitabhängigkeit ergab sich als Potenz mit dem 

„Homolog ie -Exponenten" k=y>. Die Homologie-
Lösungen ergeben sich, wenn man mit demselben 
Ansatz für die Zeitabhängigkeit die gasdynamischen 
Gleichungen streng zu lösen sucht. Dabei zeigt sich, 
daß für jeden Wert von k Lösungen existieren. 

Die Stabilitätsrechnungen (Abschnitt 6) zeigen 
eine Tendenz vieler Anfangs Verteilungen, mit der 
Zeit in eine Homologie-Lösung überzugehen, in der 
u etwas langsamer als in der obigen Abschätzung, 
nämlich etwa mit abfällt. Qualitativ läßt sich 
das* wie folgt deuten. Die Welle wird, wenn man 
sie als Block schematisiert, in Wirklichkeit am hin-
teren Ende Materie verlieren. Diese muß also eine 
geringere Geschwindigkeit als u annehmen. Damit 
wird ihr Impuls kleiner, als er war, solange sie noch 
dem Block angehörte. Die zurückgelassene Materie 
überträgt also wie bei einer Rakete Impuls auf den 
Block. Dessen Impuls pro Masseneinheit nimmt 
somit zu, und daher fällt seine Geschwindigkeit 
langsamer als nach obiger Abschätzung mit der Zeit 
ab. Man kann auch diesen Gedankengang durch 
Einführung einer mittleren Geschwindigkeit und 
Dichte hinter dem Block quantitativ fassen und 
erhält dann einen von y2 abweichenden Exponen-
ten, der aber nur durch zusätzliche Überlegungen 
über die Energie der Strömung festgelegt werden 
könnte; wir verzichten auf diese Rechnung, um uns 
den strengen Lösungen zuzuwenden. 

3. D i e G r u n d g l e i c h u n g e n 

Wir verwenden die Grundgleichungen der Gas-
dynamik für ein ebenes Problem in der Form 

Kontinuitätsgleichung: GT + UQX -f QUX — 0, (1 a) 
Impulsgleichung: out + guux + px = 0, ( l b ) 
Entropiegleichung: 5f + %sa. = 0 ; ( l c ) 

Q, p, u, s sind resp. Dichte, Druck, Strömungsge-
schwindigkeit, Entropie der Masseneinheit. Die En-
tropie kann vermittels 

s = cv In pq-K (2) 

eliminiert werden. ist das Verhältnis der spezifi-
schen Wärmen, das wir in den numerischen Rech-
nungen, im Hinblick auf die geplante astrophysika-
lische Anwendung auf einatomige Gase, zu 5/3 an-
genommen haben. 

Diese Gleichungen sind zu ergänzen durch die 
Übergangsbedingungen an der Front, die wir von 

* Ich verdanke diese Bemerkung Herrn v. H o e r -
n e r. 
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vornherein für den Grenzfall sehr großer Machscher 
Zahl schreiben, für den wir sie allein zu verwenden 
haben. Wir schreiben sie für allgemeines x und für 
» = 5/ 3 

x+1 
Q= gR = ( 3 b ) 

x—1 1 
p = —g—Q = - ' (3c) 

Dabei ist v die Geschwindigkeit, mit der die Front 
wandert, und die Dichte des ruhenden Gases vor 
der Front. 

Es sei erlaubt, eine kurze direkte Ableitung dieser 
Übergangsbedingungen zu geben, die gewöhnlich 
aus den komplizierteren Bedingungen für Stöße be-
liebiger Stärke durch Grenzübergang gewonnen 
werden. Wir betrachten den Vorgang in dem Be-
zugssystem, in dem das durch die Front hindurch-
gegangene Gas gerade zur Ruhe gekommen ist 
(dieses Bezugssystem ist bei C o u r a n t und F r i e d -
r i c h s 4 illustriert). Das Gas der Dichte £>R strömt 
in diesem System mit der „absoluten" Geschwin-
digkeit u auf die Front zu, die ihm mit der Relativ-
geschwindigkeit v entgegeneilt. Der für das verdich-
tete Gas verfügbare Raum wächst mit der „abso-
luten" Geschwindigkeit der Front, d. h. mit v—u. 
Die Erhaltung der Masse erfordert daher 

e(v—u) = pRv. (4) 

Das anströmende Gas hat die Impulsdichte QR,U. 
Pro Zeit- und Flächeneinheit wird daher der Im-
puls Q-&uv von der Front verschluckt . Er muß durch 
die Druckdifferenz aufgefangen werden. Der Grenz-
fall des starken Stoßes verlangt, daß der Druck im 
anströmenden Gas vernachlässigt werden kann. 
Also ist 

p = gRuv. (5) 

Die kinetische Energie des anströmenden Gases pro 
Masseneinheit ist u2\2. Sie wird beim Durchgang 
durch die Front völlig in Wärme verwandelt, da das 
Gas ja nachher makroskopisch ruht. Die Wärme-
energie des anströmenden Gases wird wieder ver-
nachlässigt. Also hat das Gas nach dem Durchgang 
durch die Front die thermische Energie pro Massen-
einheit U2\2 und pro Volumeneinheit QU2/2. Nun ist 
in einem Gas mit / atomaren (translatorischen oder 

4 R. C o u r a n t and F r i e d r i c h s , Supersonic Flow 
and Shock waves, Interscience Publishers, New Vork 
1948; Beilage zu S. 124. 

rotatorischen) Freiheitsgraden die thermische Ener-
giedichte e = fpl2=pl(x—1). Folglich ist 

p=—2—QU'. (6) 

Dies ist bereits die Bedingung (3 c ) ; die beiden ande-
ren folgen mühelos aus (4) und (5). 

Anschaulich ist wohl das Wichtigste an diesen Be-
dingungen, daß die Dichte auch bei beliebig starken 
Stößen nur um den von der Stoßstärke unabhängi-
gen Faktor ( x + l ) / ( x — 1 ) zunehmen kann. Dies läßt 
sich aus der eben gegebenen Herleitung physika-
lisch einleuchtend machen. Die Moleküle des Gases 
behalten beim Durchgang durch die Front ihre 
kinetische Energie bei ; diese wird nur aus der ge-
ordneten Form des Strömens in die ungeordnete der 
Wärme überführt. Dabei nimmt der Betrag der 
durchschnittlichen Geschwindigkeitskomponente 
des Moleküls in der ursprünglichen Flugrichtung 
nur um einen festen Faktor ab, der daher rührt, 
daß die Energie nun über alle Freiheitsgrade gleich-
mäßig verteilt wird. Ein Teil der ,,zur Ruhe gebrach-
t e n " Moleküle fliegt den ihnen nachfolgenden mit 
dieser ihrer thermischen Geschwindigkeit entgegen 
und bringt sie schon an einem weiter stromaufwärts 
gelegenen Ort zum Stehen. Je schneller die anströ-
menden Moleküle sind, desto schneller fliegen ihnen 
auch die thermischen Moleküle entgegen, und der 
Ort, an dem sie sich treffen, teilt den mittleren A b -
stand zweier aufeinanderfolgender Moleküle immer 
im selben Verhältnis. 

4. D e r H o m o l o g i e - A n s a t z 

Die Gin. (1) enthalten keine dimensionsbehafte-
ten Natur- oder Materialkonstanten. Ihre Form ist 
daher invariant gegenüber der Skalentransforma-
tion von Länge, Zeit und Dichte 

x = ax, t — ßt, g — yg, (7) 

wenn Geschwindigkeit und Druck entsprechend 
mittransformiert werden 

u = (x • ß"1 ü, p = ix2 ß~2 y p. (8) 

Hingegen zeichnen die Lösungen derselben Glei-
chungen im allgemeinen absolute Maße aus und sind 
daher dann gegenüber der Skalentransformation 
nicht invariant. Z. B. führt man zur Linearisierung 
der Gleichungen „ungestörte" Werte von Dichte 
und Druck ein und definiert damit zugleich eine ab-
solute Geschwindigkeit, die Schallgeschwindigkeit; 
periodische Lösungen zeichnen darüber hinaus noch 
eine Länge, die Wellenlänge, aus. Doch besitzt eine 
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gegen eine bestimmte Transformationsgruppe in-
variante Differentialgleichung auch Lösungen, die 
gegenüber derselben Gruppe invariant sind ( „sym-
metrische Lösungen") . Diese Lösungen interessieren 
uns hier. \A ir nennen sie Homologie-Lösungen. 

Y\ ir betrachten nicht die allgemeinste mögliche 
Homologie-Lösung (vgl. dazu B i r k h o f f 5 ) , sondern 
beschränken uns auf Lösungen, die von einer neuen 
Variablen 

£ = xlk~l (9) 

und der Zeit nach dem Ansatz 

Q = ldr{£), u = t~k(p{Z), p = td~2kxp{Z) ( 1 0 ) 

abhängen. Derselbe Ansatz wurde von G u d e r l e y 
und von C o u r a n t und F r i e d r i c h s für zentral-
symmetrische Probleme verwendet. Zum Vergleich 
stellen wir einige Bezeichnungen dieser beiden Ar-
beiten den unseren gegenüber: 

G u d e r l e y 3 : £ n g n£v 
C o u r a n t -
F r i e d r i c h s 4 : cc = A_1 Q a.r}~at~1u 
h i e r : | 1 — k d r(=g) cp (11) 

Unsere Lösungen sind nur brauchbar, wenn auch 
die Randbedingungen die Skalentransformation zu-
lassen. Für die Übergangsbedingungen (3) trifft dies 
zu. Hier liegt der Grund dafür, daß wir uns auf 
starke Stöße beschränkt haben; die allgemeinen 
Stoßbedingungen führen durch die Zustandsgrößen 
vor dem Stoß absolute Maße ein. Die Bedingung 
(3b) verlangt d = 0. Hingegen bleibt k beliebig. Die 
Gin. (10) reduzieren sich damit auf die von nun an 
benutzte Form 

e = e ( £ ) , u = t-k(p(£), p = t-*kip(t). (12) 

Wir wählen ferner von nun an y, = 5/3. 
Nun heiße der Ort der Front X = X(t), und die 

Werte der Zustandsgrößen am Ort der Front P, 0 
und W. Nach (3 a) ist 

d l 4 Tr 4 
d T = - 8 " < A > = 3 ( 1 3 ) 

W7ir versuchen den Ansatz, daß die Front für alle 
Zeiten an demselben festen Wert | F liege. Damit 
wird X = | F t1-7*, und Gl. (13) wird mit 

5 G a r r e t t B i r k h o f f , Hydrodynamics, a study in 
logic fact and similitude, Princeton University Press, 
London 1950. 

* Ich danke Herrn B i e r mann für die Möglichkeit, 
die Rechenmaschine für diese und die daran anschlie-

erfüllt. 
Wir können danach o und cp durch ihre Front-

werte dimensionslos machen; d .h . wir erfüllen alle 
Randbedingungen (3) durch die Wahl 

j ' - I . O - I . S ' - T . f i - ü i h r (15> 
Führen wir noch die Hilfsgröße 

* = ? + ( * - ! ) £ (16) 
ein und setzen in die Grundgin. (1) ein, so erhalten 
wir die drei gewöhnlichen Differentialgleichungen 
(Strich heißt Ableitung nach f ) 

X g' + g cp' = 0, 

ZG99'— kgcp — ip' — O, (17) 

i (ev'—T^Ö')—2 k2W = 0 • 
G u d e r l e y und C o u r a n t - F r i e d r i c h s erhalten 

statt dieser drei Gleichungen eine einzige, dafür 
kompliziertere gewöhnliche Differentialgleichung 
und zwei Quadraturen. Nach dieser Methode werden 
die hier vorgelegten Lösungen in einer Arbeit von 
H ä f e l e diskutiert werden. 

Das obige Verfahren ist für alle Werte von k außer 
& = 1 anwendbar. In diesem Sonderfall muß man 
statt (9) und (12) den Ansatz 

£ = Int, g=g(£), ( 1 8 ) 

u^t-tyd), p = t~2y>(S) 

wählen. Man erhält dann wieder die Gin. (17), wenn 
man in ihnen 

Z = <P~ I (19) 

wählt und für k den Wert 1 einsetzt. 

5. L ö s u n g e n f ü r v e r s c h i e d e n e k 

Die Gin. (17) wurden auf der elektronischen 
Rechenmaschine G l * für eine Reihe von ^-Werten 
numerisch integriert. Das Ergebnis dieser Rech-
nungen wird im folgenden beschrieben; eine mathe-
matische Analyse wird die Arbeit von H ä f e l e 
geben. 

Die verwendeten Werte lagen im Intervall 
— 1 ^ k ^ + 2. Außerhalb dieses Intervalls sind 
keine wesentlichen Abweichungen des Lösungstyps 

ßenden Rechnungen meiner Mitarbeiter benutzen zu 
können, Herrn S c h l ü t e r für die erste Anleitung zum 
eigenen Rechnen, und den Herren H a i n und F. 
M e y e r für die Mitwirkung bei den Rechnungen. 
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von dem an den Grenzen des Intervalls geltenden 
zu erwarten. Im Intervall liegen zwei kritische 
Werte, an denen sich das Verhalten der Lösungen 
völlig ändert. Der eine Wert ist & = 0. Er entspricht 
der stationären Stoßfront, hinter der alle Zustands-
größen konstant sind; diese ist also ein Sonderfall 
der Homologie-Lösungen. Der andere kritische Wert 
hat sich in mühevollen numerischen Rechnungen 
von H ä f e l e und H a i n zu k = 0,333 ergeben; ob 

k =0,9 
t =const 

T 

i i i 

Abb. 1. Lösung im Gebiet I. ft = 0,9. Der Ort der Front 
ist beim Abszissenwert 0. Die Skala auf der Abszissen-
achse ist in diesen und den folgenden Figuren verschie-
den gewählt, so daß geometrisch möglichst vergleich-
bare Bilder entstehen. Der letzte in der Rechnung ver-

wendete Abszissenwert ist jeweils angegeben. 

\t 

k=0,3 
t -const 

u 

P 

Abb. 2. Lösung im Gebiet II. fc = 0,3. 

der strenge Wert £ = 1 / 3 wäre, konnte bisher nicht 
ermittelt werden**. Wir unterscheiden drei Gebiete: 
I : k> 0,333; I I : 0 ,333> k> 0 ; I I I : k< 0. Die ersten 
Figuren zeigen je ein Beispiel für die drei Lösungs-
typen. Als Abszisse ist der Abstand von der Front 

£ = — £ 

gewählt. Aufgetragen sind jeweils g, U, p und die 
Temperatur T . 

** A n m . b. d. K o r r . : Dies wurde inzwischen von 
v. H a g e n o w bewiesen. 

Als Beispiel für eine Lösung in I wurde ft = 0,9 
gewählt, g, u und p nehmen von der Front an nach 
hinten stetig ab ; die Temperatur ist nahezu kon-
stant mit einem flachen Maximum. In der Nähe der 
Stelle £ = 0,1 werden alle Funktionen plötzlich sehr 
steil und bekommen bei demselben Abszissenwert 
schließlich eine senkrechte Tangente. Über diesen 
Punkt hinaus kann die Lösung nicht fortgesetzt 
werden. Bei weiterer Rechnung würden die Kurven 
u usw. umkehren, also für Werte zwischen 
der singulären Stelle und der Front zweideutig 
werden, für £-Werte, die weiter von der Front ent-
fernt sind, überhaupt keine Lösung ergeben. 

2,00 

100 

0,33 

0,086 " 0° 
Abb. 3. Lösung im Gebiet III. k = — 1. 

Als Beispiel für eine Lösung in I I ist die für k = 0,3 
angegeben, u, g und p nehmen wieder stetig ab, aber 
so, daß die Temperatur bei wachsender Entfernung 
von der Front ständig zunimmt und schließlich bei 
einem endlichen f -Wert divergiert. Auch hier kann 
die Lösung nicht über den singulären Punkt hinaus 
geführt werden. 

Als Beispiel für eine Lösung in I I I stehe k=—1. 
Hier nehmen u, g und p nach hinten, soweit die 
Rechnung geht, immer weiter zu. Schließlich muß 
aber eine Singularität ähnlich der in I eintreten. 
Dies wird in den Arbeiten von H ä f e l e und F. 
M e y e r im einzelnen dargelegt werden. 

Ehe wir auf die Singularitäten der Lösungen ein-
gehen, sei ihr Verhalten im regulären Gebiet erör-
tert. Man kann für jede Zeit t die Funktionen von | 
als Funktionen von x lesen. Diese verändern sich 
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dann mit der Zeit ähnlich zu sich selbst. Man kann 
also die Homologie-Lösungen als solche Lösungen 
charakterisieren, deren Anfangsbedingung gerade 
eine Weiterentwicklung der Lösung garantiert, bei 
der sie zu sich selbst ähnlich bleibt. Daher haben 
wir bei ihnen nicht mehr die Freiheit , eine Anfangs-
verteilung der Zustandsgrößen vorzugeben. 

Die Gl. (9) zeigt, daß sich die |-Skala für t = 0 auf 
einen Punkt zusammenzieht (oder, für k> 1, un-
endlich gedehnt wird). Wir beschränken die Diskus-
sion auf positive Werte von t; für negative t werden 
die Lösungen von F. M e y e r und H ä f e l e diskutiert 
werden. Die Homologie-Lösungen zeigen also auch 
für einen bestimmten Zeitpunkt ein singuläres Ver-
halten. Physikalisch sinnvoll sind sie von einem 
Zeitpunkt t an, der etwas größer als 0 ist. Wir stellen 

Abb. 4. Frontverläufe im »-^-Diagramm für verschie-
dene Werte von k. 

ihr Verhalten dar, indem wir im :r-£-Diagramm die 
Weltlinie der Front aufzeichnen, nach der aus (14) 
folgenden Gleichung 

4 
X = 3(1— k) 11~k. (20) 

6. H o m o l o g i e - L ö s u n g e n a ls N ä h e r u n g s -
l ö s u n g e n 

Alle Homologie-Lösungen, außer der für & = (), 
haben Singularitäten. Auch die Grenzlösung für 
£ = 0,33, welche zwar die für die Gebiete I und II 
charakteristischen Singularitäten vermeidet, wird, 
wie H ä f e l e gezeigt hat, in größerer Entfernung 
von der Front doch singulär. Wir können daher in 
unserem ebenen Problem nicht, wie es G u d e r l e y 
im zentralsymmetrischen Problem getan hat, einen 
Wert von k durch die Forderung durchgängiger 
Regularität der Lösung auszeichnen. Es fragt sich, 
ob die Homologie-Lösungen unter diesen Umstän-
den überhaupt physikalische Bedeutung haben. 

Nachdem wir aus solchen Zweifeln heraus die 
Homologie-Lösungen beiseite gelegt hatten, wurde 
unser Interesse an ihnen neu erweckt durch eine 
graphische Lösung der partiellen Differentialgln. 
(1) für eine willkürlich gegebene Anfangsbedingung, 
die von E. A . M ü l l e r ausgeführt wurde. Es zeigte 
sich, daß diese Lösung für große Zeiten in der Nähe 
der Front einer Homologie-Lösung mit einem &-Wert 
in der Nähe von 0,4 ähnlich wurde. Wir haben 
daraufhin das Problem in einer Reihe von Arbeiten 
wieder aufgenommen. Im folgenden soll über die 
Fragestellung und über die wichtigsten bisherigen 
Resultate dieser Arbeiten, die in extenso in dieser 
Zeitschrift publiziert werden sollen, kurz referiert 
werden. 

Für k = 0 ist sie eine gerade Linie; die stationäre 
Front läuft mit konstanter Geschwindigkeit. Für 
k < 0 nimmt die Geschwindigkeit mit wachsender 
Zeit zu (u ~ t~k); hier wird die Front durch den 
hinter ihr herrschenden Überdruck ständig be-
schleunigt (mit einem wegen der Singularität un-
endlichen Energie Vorrat). Für 0 < k < 1 wird die 
Front, die von einem im endlichen gelegenen Ort 
mit anfangs unendlicher Geschwindigkeit abgeht, 
stetig verlangsamt, läuft aber mit der Zeit beliebig 
weit. Für k> 1 kommt die Front für t = 0 aus dem 
Unendlichen, wird aber im Endlichen asymptotisch 
zum Stehen gebracht. 

Abb. 5. Abhängigkeitsgebiet einer von B bis A homo-
logen Lösung. 

Man kann die Frage stellen, was aus einer Vertei-
lung von Q, u, p wird, die in einem bestimmten 
Augenblick dem regulären Teil einer Homologie-
Lösung von der Front bis in die Nähe der singulären 
Stelle gleicht, dort aber dann in einer „geglätteten" 
Weise fortgesetzt wird. Sei (Abb . 5) OBC der Front-
verlauf und OA die Weltlinie der Singularität der 
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gewählten Homologie-Lösung (OB und OA sind je-
weils Kurven £ = const), und werde zur Zeit t0 eine 
Anfangs Verteilung vorgegeben, die von B bis nahezu 
A der Homologie-Lösung gleich ist, dahinter aber 
von ihr abweicht, so können wir den weiteren Verlauf 
der Lösung nach der Charakteristiken-Theorie dis-
kutieren. Die drei Gin. (1) zeichnen 3 Scharen von 
charakteristischen Kurven aus. Wenn a die Schall-
geschwindigkeit ist, so läuft von jedem Punkt im 
a;-£-Diagramm eine Charakteristik mit der Geschwin-
digkeit u + a nach rechts, eine andere mit der Ge-
schwindigkeit u—a nach links; zwischen ihnen 
liegen die Lebenslinien der Geschwindigkeit u, auf 
denen die Entropie konstant ist. Der Einfluß der 
Abweichung der wirklichen Anfangs Verteilung von 
der homologen bei A erreicht die Front erst längs 
der rechtsläufigen Charakteristik durch A ; diese 
schneide die Front in C. Im Dreieck ABC muß die 
wirkliche Lösung also mit der Homologie-Lösung 
übereinstimmen. D. h. wenn man eine Homologie-
Lösung längs einer Strecke CA vorgibt, so gibt es 
ein Abhängigkeitsgebiet dieser Strecke, in dem sich 
die Homologie-Lösung wegen der Differentialglei-
chungen selbst aufrechterhält. 

v. H o e r n e r und H a i n haben nun durch aus-
führliche numerische Lösungen der Gin. (1) für 
verschiedene Anfangsverteilungen gefunden, daß 
nicht nur diese, auf ein Gebiet beschränkte Tendenz 
der Homologie-Lösung zur Selbsterhaltung besteht, 
sondern daß umgekehrt anfangs sehr verschiedene, 
zunächst durchaus nicht homologe Lösungen mit 
wachsender Zeit gegen eine und dieselbe Homologie-
Lösung konvergieren. Diese hat nach der Rechnung 
ein £ zwischen 0,38 und 0,40. Abb. 6 zeigt die Lö-
sung für £ = 0,39, die im Zusammenhang der unter 
5. diskutierten Lösungen schon vorher durch einige 
Eigenschaften aufgefallen war. Sie hat den allge-
meinen Typus der Lösungen des Gebiets I. Sie reicht 
aber hinter der Front sehr weit und erreicht dort 
negative Werte der Geschwindigkeit sowie sehr 
kleine Werte von Druck und Dichte. Während dies 
für alle Lösungen gilt, die zwischen 0,33 und etwa 
0,4 liegen, ist sie außerdem durch den weithin 
nahezu geradlinigen Verlauf von Geschwindigkeit 
und Temperatur (Strömungs- und Schallgeschwin-
digkeit) ausgezeichnet, u" verschwindet an der 
Front für £ = 5/13 = 0,385, und T" für £ = 0,379. 

Es ist uns bisher nicht vollständig gelungen, die 
„empirische" Stabilität dieser Lösung theoretisch 

zu begründen. Immerhin hat F. M e y e r folgendes 
gezeigt: Er entwickelte beliebig vorgegebene An-
fangsverteilungen in der Nachbarschaft der Front 
nach Potenzen des Abstands von der Front. Die er-
sten Entwicklungsglieder können mit den ersten Glie-
dern einer geeignet gewählten Homologie-Lösung 
gleichgesetzt werden. So läßt sich ein „effektives £ " 
der Anfangs Verteilung an der Front bestimmen. Die 
Entwicklung wird so weit getrieben, daß die Ab-
weichung der Anfangs Verteilung von der Homo-
logieverteilung in Erscheinung tritt. Diese Abwei-
chung kann durch gewisse aus den Entwicklungs-
koeffizienten gebildete Ausdrücke gemessen werden. 
Nun wird die zeitliche Weiterentwicklung der An-
fangsverteilung für kleine Zeitspannen untersucht. 
Dabei ändert sich natürlich das effektive £. Es 
zeigte sich, daß es stabile und labile Regionen der 
£-Werte und der „Abweichungskoeffizienten" gibt, 
und daß in der Gegend von £ = 0,39 ein (vielleicht 
der einzige) Bereich der Stabilität liegt, dergestalt, 
daß Lösungen, die sich nicht zu weit von £ = 0,39 
unterscheiden, mit der Zeit dorthin tendieren. 

W 

0,333 

0 

Die Grenze dieser Methode liegt darin, daß die 
Entwicklungen schlecht konvergieren. Für größere 
Gebiete existieren bis jetzt nur qualitative Über-
legungen von der in Abschnitt 2 mitgeteilten Art. 
Ebenso liegen im Augenblick der Abfassung dieser 
Arbeit noch keine Ergebnisse über die Umformung 
vor, welche auch die Lösung mit £ = 0,39 von der 
Stelle ihrer Singularität her mit der Zeit erleiden 
muß; wegen der Länge dieser Lösung sind auch die 
dafür nötigen numerischen Rechnungen sehr zeit-
raubend. 


